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3
By Roland J, White and Dean G, Klampe
SUMMARY

Recent airplane design trends have been directed along
the line of control-free-stability analysis involving motions
of the control surfaces having frequencies less than those
considered in flutter calculations, dbut great enough to re-
qulre a knowledge of the ailr forces resulting from velocity
displacements. In addition to this, control arrangements
have been considered having the entire airfoil pivoted or
having a flap or tab actuated by pressures developed on the
contour of the alrfoil, 1In order to facillitate these calcu-~
lations a systematic presentation of the necessary pressure

and force coefflecients acting on & thin airfoll having a flap'
and tab has been made and presented in this report in a form

sultable for stability calculations.

Equations for the pressures have becn derived from the
baslc equations of reference 1 and their development has been
glven in detall, PForce coefficients have been btaken direotly
from references 1 and 2 or integrated graphically from the
curves of pressure distribution. In order to preserve a con-—
tinuity of oquations, the displacement, veloecity, and accelm
eration stabllity coefficients all have been calculated sven
though the accelerntion or virtual mass effect gonerally may
be neglectod in stability calculations. In all cases only

the real part of the complex equations of reference 1 is con-

sidered dus to the order of frequencies generally involved.

RESTRICTED
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SYMBOLS

a anglo of attack referrod to. rolative wind (radians)

6,0t angle of rotation of wing referred to horigzontal (radians)

-=,Y an%le hetween the relative wind vector and horizontal
radlans)

8§, flap deflection (radians)
8¢ tad deflection (radians)
b semi-chord of airfoil (ft)

c flap hinge position in fractions of the airfoll semi-
chord (measured from airfoil center)

a center of rotation of eirfoll in fractlions of the airfoil
semi-~chord (measured from alrfoil center)

.

E center of rotatlon of airfoil in fractlons of the totel
chord (measured from L.E.

E ~ ratio of the flap chord to the total chord
cp total chord of airfoil (ft)

cg flap chord (ft)

cy tab chord (ft)

h vertical displacement of airfoil (ft)

. v velocity (fps)

M.A.0, mean aerodynamic chord (f%t)

x  distance from ailrfoil chord midpoint to any chordwise
statlon measured in fractions of the seml-~chord

P pressure difference between upper and lower sgurfaces on _ _
alrfoil

% time (sec)
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p mass air density (slugp/ft3) , .
P vel§city potential function

r clrculstion

P

= 1 2
= P/ = pVv
/%e

Cy, 11ft coefficient
Cn pltching moment coefficient

Cyg hinge moment coefficient

_oCy, S S — o
°x(y = 30y
c
%a () --2—(—’;‘-
6, . = OCH
5O 730 .

NOTATION

Before ths stability coefficiente may be derived from
the equations of reference 1 it is necessary to distinguish
between the degrees of freedom employed in reference 1 and

-those generally used in control-free-stability calculations.

Consider an airfoil to have its center of motion poslition
at point & as shown in figure 1. The angle & as shown in
this figure uill define the angle of the 'chord wlth respect to
the horizontal and the angle Y will be the angle of the
flight path «with respect to the horizontal, Then

h
- 1 = e e
6 = o Y = =

where o denotes the value of o as used in reference 1
to distingulsh from the value of o employed in stabllity
calculations. ’ . :
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The angle of attack of the airfoil is then

4

where h 1s the translatlional veloclty defined in reference 1.
In the stability notation chosen the differential oporator

D() will indicate O()/dT where T 1is the aerodynamic time
having units of half-chord lengths. The value of T 1ig de-
fined by the squation 7Tb = vt, giving :

37 /3t = v/b
where
v true airspeed (ft/sec)
t time (sec)
b half chord of airfoll (ft)

The degrees of freedom of the airfoll will be a, 6, &, and
8§y where & 1s the flap angle and 1s equivalent to B wused

in reference 1, and &8¢ is the tab angle. All angles will
be expressed in radian measure. : e

In forming the stability coefficients each motlon is
assumed to take place with the other three degrees of free-

doms maintalning constant values. It is now necessary to re-

place varlous terms of the equations given in reference 1 with
the newly defined coordinatee. The substitutions are given in
table I and gre all apparent with the exception of those for

D(g) and D~ (6).

The value of D(8) expresses tho airfoil rotating at
uniform angular velocity but maintaining a constant angle of
attack ao. To accomplish this the flight path angle must have
a constant rate of change producing a curved flight path;
‘hence '

Ao 98 oT _ v .
g =5 5F = 2() 3
giving
D(g) = 28 - Do

i
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If o 1s to be constant then

h
- = + constant

S
i
@
n

giving

4lB's

hence

In order to obtain equations in terms of D(8), a substitu-
tion for &' and B from the equations of reference 1 must
be made, ol

In case the airfoil conslidered is a tall plane the =zsro-
dynamic time T will be based upon the main wing chord which
may be the wing mean aerodynamic chord. In this casse the
valuo of a is to be measurcd in torms of half-chord lengths
of tho tail chord and the final value of the stability or
pressure coefficlient converted by multiplying by GT/M.A.G.

for D() and (Cp/M.A.C.)° for D°() coefficlents, whers
GT 1s the taill chord. If 1 4is the distance of the aero-

dypamic center of the taill plane aft of the alrplane center
of gravity in feet, then

- . 2t 1
a-——T-z

The stability and pressure coefficients have the subscript
denoting the type of coefficient; for examplé,

3P
3Dn(e)

30y
%Ep?(s) = 307(s)

Pp(g) =
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TABLE FOR CONVERTING EQUATIONS OF REFERENCE 1 TO FORM

EQUATIONS OF THE STABILITY COEFFICIENTS

Replace the

R i e §

© ﬁ/v @
D(w) bﬂ/va D{)
(6) bm,/v ) D(e)
/v 2 -D(6)
D°(6) vat/v” 2 (8)

8 8 °
D) op /v ' D(s)
p3(s) v /v? %)

*A11l other terms of equations taken as zero

C-f_1.EF-H T
2

PRESSURE DISTRIBUTION OVER A THIN AIRFOIL WITH FLAP

The chordwise distribution of pressure difference over a
thin airfoil with flap will be caleculated using the equations
of the non-circulatory and cilrculatory veloclty potentials
given in reference 1. It will be assumed that the frequency
of oscillation is low enough for terms containing &, as de-
fined in reference 1, to be taken equal to zero. The part of
the pressure‘distributlon not containing 2nF willl bve defined
as the "basigd pressure distribution,' and that part containing
2nF will define the =additional pressure distribution. This
segregation will permit airfoll characteristics to be calcu-,
lated for airfoils having a finite aspect ratio. TFrom page 6
of reference 1, the pressure difference p Dbetween the upper
and the lower surface of the alrfoil can be written as:



NACA TN No. 960 : 7

e o p _ 3 3
forewliuer] @

A positive pressure difference is taken as upward, which
is the reverse of reference 1, From page 5 of reference 1,

the velocity potential of the non-circulatory flow, using the
notation of rceforence 1 and substituting o' for o, 1s,

w:vb[m]ml + vD [(g-a)m]b—i—'

+ vb[ 1l - xg:]é + vb[£-<cos‘1 c /1 - x® - (i-- ¢) log ﬁ)} 8
T

o

+ vb [é}.(vﬁ - ca./l — %% + (x - 20) /1 - x® cos™ ¢
T

= (x - 0)? Log N)](%B—) (2)
N:(l‘- cx~A/1~x3ﬁ~ca>/(x~c) | (35

. 2 . t
30 - oop [—=F  _Tat + vo 1 + 2ax - 2x (ba.)
ox [ 1 - x7 . 2./1 - x v

+ vb ___:E___]<%9 + vb % — =% __cos”' ¢ - log ¥
l - xa_ , 1 - x°
} . . X

where

then

x(x - 2e) -1 o _ 5(x - c) log N - (x - ¢)? a__&’fég_:' E)
"?T=f=;3. ax v

(4)
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where
g log ¥ 1N
3x XN 3x
_ (Jl— c'«/l—x3> - =1 (s)
J1 - x® <l—cx-.\/1—x2.\/l—ca> x ~ ¢
- 3
So  _ ~ ba! | 2 | /X2 _ /1 - £2 | b a'
5t [ 1 x ] [(2 a> 1 X }

+ v3. /1 - 23|} + v3| X 1 - %% cos~! ¢ - (x - ¢) log X bR
= ™ v

- (x - c)? log N)J-EZ? (6)
v

If equations (4) and (6) are substituted in equation (1),
the pressure distribution for the non-circulatory filiow can be
found. It is now necessary to determine such a circulatory
flow that the pressure between upper and lower surfaces at the
trailing edge is zero. If this pressure distribution is added
to the above distribution, then the pressure distribution due
to the movement of the airfoil having an infinite aspect rabtio
can be found. Pressures determined by this method will pro-
duce a 1lift; hence the angle of attack of the airfoll willl be
reduced so that the net 1ift is zero by deducting the pressure
distribution due to a' in proportion to the effective change
in angle of attack. The resulting pressure distribution then

will be termed the "basic pressure distribution' and will be o

independent of aspect ratio.

The pressure dlstribution due to the non-circulatory flow
obtained by substituting equations (4) and (6) in equation (1)
ls

—
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_ _ ) ',
Po = E vg [ —4x J a' + _p_ vg !- 2(3 + _2ax ix )] ba
2 / v

1~ x° 2 L /1 - %P

4jB5.

2 + B +® _—4x
ve 2 / =
l - x

(1IN ~1
+%v2[4 l__bel;_'_%va[i(—zcos 'c__-IO_gN

1 - x°

(x = ¢) 9 log N’):' 5+ £ o3 E(--—x /1..03_
ox 2 T =
1 -z

3
. (3 + 2¢x « 4x°) cos~t ¢ — é(x - ¢) log X
Vi - x? |

~(x - ¢)? i...:‘:_P_g__N.):I b8 4 £ v’*[ﬁ(/l - xXf1 - ¢?
3x v 2 L5

1 1 2 1628
~- 2¢c cos - ¢ + x cos ¢} - (x - ¢) logN\)] B (?)

=2

The pressure distribution due to the circulatory flow neg-
lecting the weke effeucts can be found by letting

the equation for (2mw/AT') dp/dx
ence 1, Then,when A’ =T,

_ Xo —»o in
as glven on page 6 of refer-
equation (1) gives
20v /D] 1 ' '
. = 2P _>__ S (8),
r b \an/ /1 . L2

Now for gzero pressure at the trailing eige

Po +Pp =0 for x =1 (9)
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In order to avoid an indeterminate condition at =x = 1, mul-
tiply go and P . by 1 -~ x® ©vefore substituting in equa-
tion (9), Then :
N : T T .
T 1 ba.t h 10 11 DB
—— = bv LIS = w gy + =+ b —_— = 0
2 [a' <2 > v v w P 2 va:] (10)
where
Tr0 = 1 <« c? + coe™t ¢ -
(11)
Tll=

(1 « 2¢) cos™* c + (2 - &) /1 =~ c?

as defined in reference 1. If equation (10) is substituted
in equation (8), the pressure distribution becomes

+-1l+T——L-°-B
v

- 4 P 2 { ph bé‘
op = =t (207 [ar ¢ (2 - &) 2
/1_x3 2 2 v

T
+ Tay EE] (12)
27 v

The total pressure distributlion written in terms of the pres~
sure ratio P for an airfoil of infinite aspect ratio is

P = (po +Pp)/‘% v
et . 3 2
s la flmx | &+ |8/ 1o%® « 4a /l=x| Da! 4 14(§-a>n/l—x§ Do
[ l+x] [ l+x v 2 v
L3 A S S —— 3 -
+ 14 fI2Z B & 4ﬁ/1.—-x“z bho 4 M/i”x cos=! ¢ + fi=C . log ¥
l+x | D v ki 14+x 1ﬁxa

3 o o .
- (x-c) _a__lig_E_:] B + 2 [(z—c.—.x iec” 4+ 2 1-x° - 2¢ l-x
dx T 2 : NAEET

- 4(x-c) log N = (x-c)” 3___3%5_1{] bR + %[/‘1-—::8(/1-03
x
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To form the basic pressure distribution, the angle of atbtack

a! will be altersd so that .T' bscomes zers, The pressure
distribution due to & change in a' only is from equation
(13) '

P'CL'= 4;/ %—-—'—";——f A (14)

. Now, whensver a virtual or actual ,change in the airfoll
camber occurs due to o', B, er B, the angle o' of equa-
tion (10) must be changed so that I is zero. This must be
done since by definitien the basic pressure distridution is
seleocted for zero 1lift. For this condition the follewin
oressure distribution must be doductced from squation (13% to
form the basic pressure distridution, )

Pp, =-%//lm:_5 ! +.<;.- a)ﬁﬁl + B L Tiop 4 T2z 38 15)
~ 1 + x : 2 v v i 2m v

then the basic pressure distribution which will oceur for
P =0 1is

Pp = P - PI‘O - . .
. R e . e -
= [8./1..x3 -2 /l:z} ba! [4(%;49./1—x2] bl [4~/E~x%]3§
l+x v ve v

- 2 , ' -
+ il [x: /%’.’ﬁg - log ¥ ~ (xe-c) a___]_.__o_g_g] g + ..Z_[Mi cos"_l c
- X

T 9% i 1-x?

+ (1—071/.%;%i - 4(z~c) log T ~ {(x-c)% é-iﬂé_ﬁ] 13
Lex® ax r

* %[V[i-xz(yfi;ca + (z-2c¢) cos™?t c> - (x-¢)? log N] Ei% "(16)

v

For a wing having a finite span the slope of the 1i1ft curve n

will be less than 2w. This will cause P,' from equation (14)
to be rediaced by the factor §L' If the lift effeactiveness
T

due to the change in camber is defined as
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= (L . a> Ko = L20 Ko = T13 (17)
(2 ! B o ! B o2 .
and

P, = £ 1

AT/ 1 (18)

then the total pressure ratio for a finite wing having a
slope of 1lift curve m can be written as

l' a"l
P = [mPA] ot + [PB&' + n¥Xgy PA] ba’ + [PB;' - aPBﬁ:}b :
: v v

+ [@PA]‘% + [PBﬁ] 3% + [PBB + mKg PA] B + [PBé + mKg PA] %?

v 8
- 4+ [PB§J =5 (19)

where

Ppey = 8./1—-3:8 -2/ 1=x ) - ~
Ba! T+x S :

Pyt = 2% l-x?

1}

PBi’J'. 4 1-x3

4 lec® d lo N]
= — - N -~ —
Ppg - [x o log (x~c) ———gi—— |

} (20)

2
PBé = % [Léié:éé_l cos~t ¢ + (l-ec)x 1-c

Ji=® RV

- 4(x-c) log ¥ - (x- c)® é_lﬂé_y]
3ax

PB§ = [vflnx ( lec® + (x-2c) cos™? c> - (x—c)z log N]

~
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Values of the coefficients defined by equations (17),
(18), and (20) have been calculated and plotted in figures &

to 7.

LIFT, PITCHING MOMENT, AND FLAP HINGE MOMENT FOR A

THIN AIRFOIL WITHE A FLAP

From the equatlions for the prossurc distribution deter~
minocd in tho provious section, the airfoll 1ift and momont
coefficlents can be obtalned by integration. These integra-
tions have been performed in reference (1) for the case of
the airfoil with a single flap. Hence, it will only be
necessary to rewrite the equations here using the necessary
notations to convort to cocfficloent form. Let ’

~P
pbv?

Cr,

Op = — 2

2 p b® v*
Cg = Mg
. 2 p v® p° E®
whore .
P 1ift force given by equation (XVIII) of reference 1

My, pltching moment given by equation (XX) of reference 1.
Mg hinge moment glven by equatlion (XIX) of reference 15.-
B ratio of flap chord tc¢ total cpgré
2P =m, slope of airfoil 1ift curve

then

Cr, = ma' + [--rr + <l-z-—a>m:| ba! o

[

<
t
®
3
L 1
F‘
4 | w
Y
+
.: —'——_‘
=]
L
< |5
+
—
1
L
4Id
alse
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Op = |nf & + L) jot + |- L L a)+mif L o ba!
L 2 4 2\ 2 2\ 4 1w

~ , , T
- [- (Baslao) | m(%"’%f)gﬁ - [- %@1-5@8 - Fc-a.)_T,;-l- S

+ m<§'. + l>T11] B8 . [E_El + (c-a) .T__] i) (22)
2 & 21T v 2 2 3

+ 1 [ TaTaa Tiz T2 b8 4, 1 [Ts] n28 (23)
B2 T 4m 2w v 3 2T v=

All values of T are a function of a or ¢ only with
the exception of T,5; and Tg. -

— 1
Ty = - E-(?v + (c-a) T;)

From reference 3 the value of Ty, is

/2
3 Ta
Tl'? =-2‘I'9-T1 +<a—.]_2-.>T4=-%-(1-c ) —Tl-__

For the purposes of this report the following coeffi-
cients defined in terms of the notation of reference 1 will
be adopted:
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\.
(1. _1 1 :
Ka,' \2 a GmA = S g + S l
t
KB = Tlo/'n' CHA. = —T12/4TTE3
Kg = T,,/2m E = Cg/Cp
. |
i i =33 )
[ — " — 1T
Orpg = ™ Cmpi = 3 & L (2e)
GLBB = 0 GmBB = "(T4 + Tlo)/z
- . Tll /
Orgps = ~Ta Cugg = -<T.1 - Ty + 2) zi
T
Crpg = -1 Cupg = ?f :
a
CHpg! = ~Ty /28 Crpgg = ~(Tg - T4Tyo)/2nE"
CHpg1 = 7, /283 CHpg = T4Tyq /4TE?
3 3
CHpp = T, /2B CHB§ = T,/2nB B

Yalues of these coefficients have been calculated and plotted
in figures 2, 3, and 8 to 13, Then

3 e . .
d" 4+ m lls o+ c [ ..b—h'-
v2 v LBh v

. 23
+ [mKB] B + [GLBé + mKé] %ﬁ + [GLBg] 2iF (25)

6y = mat + r'c *y + mK4t }i'— + | Crne b
L = Ha L IBg!? o - LB
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v
+ [cmBé + mK§ Op - (c-a) °LBé] _v£
+ [cmsg - LCL'-Z_@_)_ cLBé-] _b_zéz'. (286)

+ [GHBB + o Kg GHA]B + [GHBB + m Kg GHA]_& + [GH ] % (27)

SUMMARY OF STABILITY AND PRESSURE COEFFICIENTS

Tollowing 1s a list of equations for calculating the _
pressure and stabllity derivatives. 1In some cases equatlons
involving &4 are not written, since the tab effects can be

caleculated from the equations for 8 by use of the proper
chord ratlos. '
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I. Pressure Coefficients

Po = m Py
- o
Pp(a) = P:Bh:, ('———M I )
P I Pail 1 P Oz
D(g) = | Prgr - Fah + B Kg1 T4 (m
~

P5 = PBB + n Kg PA.]

Pp(s) PBé 4+ m Ké PA} ——Ei——

M.A.C.

— . G 2
PDB(B) = —PBBJ -——L-M,.A.,G,

LN

IT, Airfoll Lift Coefficlents

CLg = 1

GI-"D(CO):: I:LBh:l <M A.C.

Crp(e) = | Obmgr - Onpk + B Ea ] G
O1p%(e) = [OLB@ J M g?c )
Ong =
OLp(s) = *mKBJ (M ~.c.
"D (s) =[GLBB <M L.0.,

)

17

(28)

(29)
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18

&(30)

(31)

ITI. Airfoil Pitching Moment Coefficlents B
r
- GT
GmD(d:) = CmBh} <M..A. c.
Omp(g) = |Cmmgr - Ompf *+ ® X&' Omy (ﬁ_gg__
@ &G,
Cmp2(g) = GmBm } (M
Gm6 = GmBB + m K.B GmA:I
I . . C
Omp? = |Omppg - (1-E-H) CL <_______>
=D~ (8) = |"PBP BB} M.L.C.
IV. Flap Hinge Moment Coefficients
CHpg = | B CHy )
- [ogon or
CB£D (w) ﬂcHBh] G
Ousp(g) = | CEmgr ~ OEmi * P Ko HA} (M
i (1-E-H)
2 - [ — G
CE£D®(g) _GHBm‘. 35 UB <M A.0. > '
= Xg ©
- . . Cop
Omep(s). = | CHpp *+ B Kf GHA:I (m‘
CHep? Congs | (——2-Y
EsD®"(s) T i hBB] <M.A,G_
CHggy = CHpsy + @ Ty CHa
Cz = -G -2, + mK§,. Cpy Sz
:IfD(ﬁ'b) - HB58¢ 8-[; EA <M,A..C.>
GHfDa(Gt) = GH-.D ] (M
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V. Tab Hinge Moment Coefflcients

CHyg = B CHy B
. Co
OHtst = CHBB + m Xg CHy
t M.A.C.
2 . CT 2 $
CHyD % (54) = [GHBBJ (m) ' (32)
. . - Cq
e = e =58 o] (55
- Cop a |
CHgp®(s) = [GH‘GBBJ (‘“‘_‘"M G > /

The basic tab hinge moment derivatives CEypg, GHtBé’
and GHtB§ were obtained from a graphical calculation of the

first moments about the tab hinge axis of the arees under the
curves of Pgg, P§, and Pspg. Thesse curves are presented

in figures 14, 15, and 186,
Curves of GHBSt which are shown in figure 17 are taken

from refoerence 2, and the curves of GHBSt and CHBgt’

figures 18 and 19, were constructed from 2 graphical calcu-
lation of the first moments about the flap hinge axis of the
areas under the curves of PBé and PB§ for the deflected

tab,.

Curtiss-Wright Corporation :
Lambert Field, Salnt Louie, Mo., Aprill 11, 1944,
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Figure 1.~ Airfoil geometry.

Fig. 1
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